
1

Making Science Simulations and Websites Easily Translatable and Available Worldwide:

Challenges and Solutions

Wendy K. Adams
1
, Hisham Alhadlaq

2
, Christopher V. Malley

3
, Katherine K. Perkins

4
, Jonathan

Olson
4
, Fahad Alshaya

2
, Saleh Alabdulkareem

2
, and Carl E. Wieman

4, 5

1
Department of Physics, University of Northern Colorado, Greeley, Colorado 80639, USA

2
The Excellence Research Center of Science and Mathematics Education, King Saud University, and the

Department of Physics and Astronomy, College of Sciences, King Saud University, PO BOX 2455 Riyadh, Saudi

Arabia

3
PixelZoom, Inc., Boulder, Colorado. USA

4
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

5
The Carl Wieman Science Education Initiative, University of British Columbia, Vancouver, British Columbia,V6T

1Z3, Canada

Corresponding Author: Wendy K. Adams, wendy.adams@colorado.edu, 970-539-6154, Fax:

970-352-3506

Abstract
The PhET Interactive Simulations Project partnered with the Excellence Research Center of Science and

Mathematics Education at King Saud University with the joint goal of making simulations useable worldwide. One

of the main challenges of this partnership is to make PhET simulations and the website easily translatable into any

language. The PhET project team overcame this challenge by creating the Translation Utility. This tool allows a

person fluent in both English and another language to easily translate any of the PhET simulations and requires

minimal computer expertise. In this paper we discuss the technical issues involved in this software solution, as well

as the issues involved in obtaining accurate translations. We share our solutions to many of the unexpected problems

we encountered that would apply generally to making on-line scientific course materials available in many different

languages, including working with: languages written right-to-left, different character sets, and different conventions

for expressing equations, variables, units and scientific notation.

Keywords: Simulations, science education, research, languages, websites, online resources, translation

mailto:wendy.adams@colorado.edu

2

Introduction

As a part of the PhET Interactive Simulations Project a method was created for translating the

PhET science and math simulations and then hosting them on the PhET website

(http://phet.colorado.edu). This approach works because the underlying science is universal and

it is only the words and norms used to represent it that must be translated. In this paper we

present the current translation process and discuss the pitfalls we encountered along the way. By

documenting the process, we hope others can avoid many of the difficulties we encountered

while creating such a tool.

The PhET Interactive Simulations Project is a substantial and growing suite of professional

quality simulations (currently ~90) for teaching and learning science. The simulations are written

in Java or Flash and are distributed from the PhET website at no cost to users, with roughly 10

million uses in the past year. The majority of PhET simulations are for teaching physics, but

there are a growing number in chemistry, biology, math and other sciences. PhET simulations

provide a high degree of interactivity in terms of user control, dynamic feedback, and multiple

representations. The simulations enable students to make connections between real life

phenomena and the underlying science which explains such phenomena (Fig. 1). The PhET

team of scientists, software engineers and science educators uses a research-based approach –

incorporating findings from prior research and internal testing – to create simulations that

support student engagement with and understanding of scientific concepts. The PhET project’s

research includes investigating the use of PhET simulations in a variety of educational settings.

(PhET Interactive Simulations 2009).

This paper describes the current solution for translating the simulations and the PhET website

including the technical issues

involved. It also explains the method

that was settled on for finding

translators and finally, co-authors

from the Excellence Research Center

of Science and Mathematics Education

(ERCSME) at King Saud University

share their experience as users of the

Translation Utility. Creating this

method for translating simulations was

a difficult and time consuming

process; however, it was much more

efficient than leaving it up to various

groups to rewrite the simulations from

scratch. It also allows a single

location to host the same product in

multiple languages, giving the

instructor the opportunity to choose

which language s/he will use in their

classroom.

Fig. 1 shows a screen shot of Circuit Construction Kit translated

into Arabic. This simulation allows the user to create circuits

using batteries, light bulbs, switches and wires. When a circuit is

completed, the light bulb lights.

http://phet.colorado.edu/

3

Current Solution

The PhET project has several underlying program goals that constrain the possible approaches to

translating simulations. PhET must remain free, be easily accessible to teachers, scientifically

accurate and user-tested. In pursuit of these goals PhET has multiple delivery modes (online,

offline, entire website offline), and the online delivery requires only the click of a mouse to

launch a sim (no certificates). In addition with PhET having simulations in both Java and Flash,

it is cost effective to have similar translation solutions for both Flash and Java sims.

In December 2007 the Translation Utility for PhET simulations was released (PhET Team

2007.) At the time of writing this paper the Translation Utility had been available for 30 months

and PhET has posted 1,758 translations of simulations. The Translation Utility is a program that

allows the translator to see the English strings contained in a selected simulation in one text box

as they enter their translation in an adjacent box (Fig. 2). The translator can then test their work

in the actual simulation to make sure it appears as intended. Once complete, the translator emails

the translated strings to PhET. PhET then compiles a translated version of the simulation and

makes it available on the PhET website. This solution came after several other avenues for

acquiring translations proved unsuccessful. In addition, it has recently become obvious that the

delivery mechanism, the website, should also be available in the user’s preferred language.

Translators

PhET first tried to use Google Translate to translate the website and simulations into Spanish

which often resulted in incomprehensible, or highly inappropriate, Spanish phrasings. Next PhET

tried hiring bilingual students, but it turned out to be very difficult to find students with the

necessary science background. Neither of these approaches led to a high-quality product and

neither had the potential to lead to translations in 51 languages.

The most successful method for translating the PhET simulations turned out to be a

contributor model similar to the Wikipedia editing model
1
. Instructors who use PhET simulations

volunteer their time and expertise to create translated simulations. These instructors are ideally

suited for creating the translated versions. On the surface this contributor model appears to be the

least expensive; but, there are much more fundamental advantages. Bi-lingual teachers who use

the simulations have three necessary characteristics: They know the scientific terms and notation

in both their language and English; they are using the simulation in class so are familiar with the

content; and they have a personal interest in the final product because they need to use it in their

course(s). An example of why the translator needs to be a teacher familiar with the content

appeared in a Russian translation of Battery-Resistor Circuit. “Show core” was translated as

“Show nuclei” where the use of “nuclei” is scientifically the incorrect concept.

PhET has encountered one other group that meets these requirements who were not actual

instructors. A teacher in Romania created a class project where his students each translated a

simulation and entered it in a contest. These translated simulations turned out to be of very high

quality since the students were in the unusual situation of knowing the simulations, knowing the

science of both languages, and being motivated to produce a high quality finished product.

1
 Wikipedia’s editing model is not to be confused with their translation model which has fully independent entries.

4

One of the challenges for the

translator includes keeping the string

length to a minimum. PhET simulations

use very minimal text which means

there is less to translate but it can be a

challenge to express the idea in

minimal wording. In addition,

sometimes there is not a direct

translation so it is necessary that

the translator completely

understand the material and context of its use, which is one reason the translator usually has to be

a teacher.

Simulation Translations

It may appear that the contributor model is a cost efficient option; however, high level

professional software developers are quite expensive, and it took them 180 hours to create the

Translation Utility in addition to the time spent internationalizing each text string in the

simulations. Much of this time spent developing the Translation Utility was figuring out the most

efficient design.

Developing software for world-wide use involves addressing three related issues: locale

specification, internationalization and localization. In computing, a locale is a set of parameters

that defines the user’s language, country, and any special variant preferences that the user wants

to see in their user interface (Deitsch 2001). For PhET simulations, a locale is defined by a

language code and an optional country code. Internationalization is the process of designing

software so that it can be adapted to various locales without engineering changes (Deitsch 2001).

Internationalization is often abbreviated as i18n (there are 18 characters between 'i' and 'n').

Localization is the process of adapting internationalized software for a specific locale (language

and country) (Deitsch 2001). Below we describe what we learned about locale specification,

i18n, and localization as related to simulations that would be of use to other groups with similar

goals.

Fig. 2 Shows the two windows of the

Translation Utility. A. The upper left

depicts the initial window where the

translator chooses the simulation and

their locale. B. The lower right

window shows the working window

where the translator enters their

translated text into the text boxes on

the right side of the screen. A preview

option is available so that the

translator may immediately view their

translation without the HTML or

MessageFormat syntax. The red

highlighted box indicates a string with

a missing HTML tag.

5

Locale Specification

There are several different standard conventions for specifying a locale, and the first decision is

which convention to use. PhET specifies a locale using codes defined by the International

Organization for Standardization (ISO). ISO 639-1:2002 defines language codes (International

Organization for standardization 2007), while ISO 3166-1 defines country codes (International

Organization for standardization 2010). While there are other standards, these are the most

commonly-used definitions. An example of a language code is pt_BR; the language is

Portuguese (pt) and the country is Brazil (BR), separated by an underscore. The country portion

of the locale is optional for languages where localization does not differ by country.

PhET's early attempts to specify locale used only a language code. Feedback from

translators quickly made it clear that language code alone is inadequate; regional differences

often require different translations for the same language. For example, Chinese (language=zh)

requires different translation for China (country=CN for Simplified Chinese) and Taiwan

(country=TW for Traditional Chinese). So we need to be able to specify zh_CN and zh_TW as

separate locales.

Internationalization (I18n) of Simulation Software

I18n support is part of PhET’s common framework- software code that is shared by all

simulations. Additional i18n support is also provided by Java and Flash.

The first task of i18n is to read and interpret the locale. For Java, the most common method

of reading a locale is via standard system properties that identify the locale to the Java Virtual

Machine (JVM), which enables Java’s built-in i18n support. For Java sims delivered via Java

Web Start (JWS), we do not have permission to set the locale for the Java Virtual Machine, and

are therefore unable to use much of Java's i18n support. (We are investigating signing JAR files

with digital certificates – see discussion under ongoing challenges below. Doing so would allow

us to set the locale for the JVM and take advantage of Java's i18n support.) Instead of using

standard Java system properties, we use PhET-specific properties to specify the locale, and

provide our own implementation to read and interpret the locale.

Flash handling of locales is similar to Java. Flash's built-in locale support only identifies

language, and is not capable of identifying country code. So we have implemented our own

mechanism (using FlashVars) to specify and interpret the locale. As with Java, this prevents us

from taking advantage of Flash's limited i18n support for rendering fonts.

Once a locale has been identified, a simulation must decide what needs to be adapted to fit

that locale. Many things can vary by locale, including language (e.g., alphabets, fonts, writing

direction), writing conventions (e.g., date formats, number formats, equations) and cultural

differences (e.g., symbol meanings, significance of colors).. PhET simulations currently support

language-related differences; other differences are not generally supported, or are supported on a

sim-by-sim basis. Here we will look at how PhET simulations support i18n of strings

(collections of characters from a specific alphabet), fonts, and writing direction.

Strings are internationalized by replacing literal strings with symbolic key values. Given a

locale and a key value, a lookup is performed at runtime, and a locale-specific string is returned.

If no locale-specific string is found, the default (English) string is used. For example, code that is

not internationalized might look like this in Java (Flash code is similar):

String playButtonLabel = “Play”; // a literal string

6

Internationalized code would look like this:

String playButtonLabel = TranslatedStrings.lookup(locale,

“button.play”); // a lookup

Translated strings are stored in locale-specific string files. For Java simulations, string files

are Java properties files; for Flash simulations, they are XML files. (Java and Flash natively

support different file types.). String files contain key/value pairs, with the values using characters

from the Unicode Standard (The Unicode Consortium, 2009). In Java properties files, all

characters that are not in the Basic Multilingual Plane are in an escaped form, while the

characters in Flash string files are directly encoded in UTF-8.

The Java string file entry for the example above would look like this:

button.play=Play

And the Flash entry would look like this:

<string key=”button.play” value=”Play”/>

Each simulation has its own set of string files, one file for each supported locale. Strings that

are common to many sims are stored in a special common-strings file, so that they only need to

be translated once.

Once we have a translated string, it must be rendered using an appropriate font, and in the

proper writing direction (left-to-right, right-to-left, or mixed direction). All PhET sims rely on

the user's computer to provide fonts. To select an appropriate font in Java sims, PhET maintains

a table of preferred fonts. If a preferred font is specified for a locale, and that font is found on the

user’s computer, then that font is used to render strings. If no preferred font is found, then the

default font on the user’s computer is used. The default font may or may not be appropriate (e.g.,

fonts that do not contain Japanese characters are inappropriate for Japanese translations). If an

inappropriate font is used, strings may be rendered improperly. In both Java and Flash

simulations, for example, characters that cannot be rendered properly appear as empty

rectangles. It would be very difficult to include appropriate fonts for each language and would

substantially increase the file size for sims (by ~1.5 MB for each font). Thus, PhET does not

attempt to distribute fonts with simulations, and relies on translators and users to report font

problems and to assist in identifying preferred fonts.

For Java simulations, the writing direction of strings is handled automatically by Java's text

renderer. Based on the specific Unicode characters, the renderer assembles the characters in left-

to-right, right-to-left or mixed direction. Flash lacks the native ability to handle writing direction,

and instead detects and uses the default writing direction of the user's computer. For example, a

Windows computer without right-to-left language support will display Arabic characters in an

incorrect left-to-right direction; however, after support is properly installed, both Arabic and

English will be displayed correctly.

Some strings contain placeholders that cannot be filled in with text until runtime. These

strings present additional writing-direction issues that must be addressed. For example, consider

the string “__ is starting up.” where the blank will be filled in with the simulation’s title. To give

the translator control over the order of the words in these types of strings, PhET uses Java’s

MessageFormat syntax (Oracle 2010) to specify parameterized strings in both Java and Flash. In

English, the above string would be “{0} is starting up.” Placeholders are specified as {0}, {1},

{2}, etc. and are filled in by the program at runtime. A pitfall of this approach is that it is

sometimes difficult for the translator to determine the semantics of the placeholders.

7

HTML strings also require formatting knowledge that translators may not have, such as tags

. To help address both MessageFormat and HTML syntax difficulties, the

Translation Utility now includes a preview capability for each individual string (Fig. 2B) so that

the translator does not have to run the whole sim preview to check each string.

Localization and the Translation Utility

Localization is the process of adapting internationalized software for a specific locale by adding

locale-specific user interface components and translating text (Deitsch 2001). PhET localization

is limited to translation of strings; we do not provide general support for adding locale-specific

components to simulation interfaces. For example, uploading an image as part of a translation is

not possible. In some cases, text is in an image (formula in Flash sims) and so cannot be

translated.

Translation of both Java and Flash simulations is supported by the Translation Utility (PhET

Team 2007). The Translation Utility provides a translator (a person creating a locale-specific

translation) with a GUI (Graphical User Interface) for creating PhET string files. Translators

choose their locale from a list of locales (Fig. 2A). The GUI then displays two columns: a left

column shows the English strings, and a right column allows translators to enter the

corresponding strings for their locale (Fig. 2B). A translation can be tested at any time by

pressing a “Test” button, which will run the simulation in the specified locale, with the

translator's strings. The translator should be checking that their translation is appropriate, is

rendered properly, and does not create user-interface layout problems. Layout problems can

occur when a translated string is significantly longer or shorter than the original English string.

When the translation is completed, pressing a “Submit” button creates a string file, which can

then be emailed to PhET.

Submissions are reviewed by PhET, and then published to the PhET website. When PhET

“reviews” a submitted translation, it is checked to see that it runs, is complete and the layout is

O.K. But, the PhET team is not qualified to check the accuracy of translations. PhET depends on

the user population to notify them of problems – similar to Wikipedia’s editing model. So far

only a few replacement translations have been received with the changes aimed at improving

completeness. There have been comments from one translator that three of the existing

translations are adequate but not ideal, and happily there have been no objections to any existing

simulation translations.

Website

Simulation Delivery

The PhET website offers three possible delivery methods for simulations: 1) Run a simulation

online which involves clicking the “run now” button on the website and requires live Internet

connection; 2) Download an individual simulation by choosing the “download” option, then the

simulation is saved to the user’s computer for use at anytime; and 3) Download the PhET offline

website. This is an installation program that puts the website and all of its content (except teacher

contributed activities) onto the user’s computer. A user then has future access to all the

simulations and supporting material without the need for an Internet connection.

All languages for each simulation are available on the website. Access can be found either on

each individual simulation page or on the “translated simulations” page. To deliver translated

8

versions of the simulations online, Java simulations are run via locale-specific JNLP files,

executed by Java Web Start, with translated strings bundled in the JAR file. Flash simulations

are run via locale-specific HTML files, with translated strings embedded in the HTML. Flash

passes the locale to the Flash Player through FlashVars.

When users download an individual simulation, they can choose which language they would

like. However, this is done using locale-specific JAR files for both Flash and Java simulations

rather than the Java Web Start JNLP files or HTML files that are used for online delivery.

Similarly, the PhET offline website includes all the translated versions of the simulations, both

Flash and Java as JAR files. These locale-specific JAR files contain string files for all locales

supported by a simulation. The offline delivery of Flash simulations as a JAR file creates the

disadvantage of requiring the user’s computer to have Java in addition to Flash. Since no

complaints have been received from users, this solution appears to be adequate.

In general, all delivery of PhET sims is locale-specific. When the user selects a sim to run,

they also select the desired locale. The sim therefore ignores the locale of the user's computer,

and runs in the locale specified by the user. This is different from typical software models,

where the application runs in the locale of the user's computer. This difference presents many

challenges, and precludes the use of many built-in i18n features of Java and Flash. However, this

approach offers the user a choice of language – an important option for science courses which

are not always taught in the local language of the computer user.

Website Translation

As the international use of the simulations has grown to over 30 percent, there is an increased

demand for local translations of the PhET website. The ERCSME at King Saud University

required a fully translated mirror

site. In addition, we found

several independent groups who

had translated the text in the

PhET web pages and posted this

translated version of the site to

their own server. It is

encouraging to see this level of

interest; however these translated

websites are static and cannot

reflect updates to the simulations

or other materials on the PhET

site. Thus, together with

Fig. 3. The PhET website

translation interface is shown. The

left hand side lists each string in

English and provides a text box for

the translator to fill in. On the right,

2/3 of the screen shows the website

with translated strings immediately

visible. Blue boxes indicate

translated strings, red strings that

have not yet been translated and an

orange box indicates a string that

needs updating.

9

ERCSME, PhET undertook i18n of the PhET website. A cost-benefit analysis demonstrated that

maintaining and adding necessary upgrades to the previous PHP–based site were nearly equal to

the cost of creating an entirely new site using Java with the Apache Wicket framework (Apache

Software Foundation 2010). Additional benefits would be improved speed and database

handling.

Thus, a third complete rewrite of the PhET website began in August 2009 and is nearly

complete. This new version went live in June 2010, and the translation feature will appear by fall

2010. Once implemented, this new version will have features including a very easy to use

preview-able translation interface (Fig. 3), and it will allow the user to switch to and browse in

their preferred language from any page.

 One of the challenges was to allow translators to instantly preview their changes. A column

of editable strings is displayed on the left side, while previews of the translated pages are

displayed on the right. Whenever a string is translated or updated, the corresponding preview is

updated, which quickly gives the translator feedback. Additionally, the website needs to handle

regular modification or addition of content that does not happen in simulations. Any new strings

are marked as “un-translated”, and when an English string is changed, any translated versions are

marked as “out-of-date”. Email notification of these events to translators will allow them to keep

their translations up-to-date.

Internationalization of Scientific Material

Arabic Translation Experiences

Here we discuss the work involved in translating PhET simulations from English into the Arabic

language. Our experience again confirms that an expert in scientific materials with bilingual

knowledge is needed in order to have accurate and understandable translations of scientific

simulations. We faced several challenges in translating PhET simulations from English into

Arabic that are shown to be common to other languages and could apply to any online scientific

materials.

First, one of the biggest challenges is the selection of words to describe scientific quantities

and expressions. These words need to be commonly used and understood by students and

teachers across the Arabic-speaking countries. However, this has proven to be difficult. Words

that are widely used in one country to express scientific quantities are not necessarily used by

students and teachers in another country due to differences in scientific background and

educational systems. For example, "acceleration" can be translated in two different ways. Some

students are familiar with one, but not the other. One has to be careful when translating scientific

materials to avoid possible misconceptions. For instance, a word might be correct linguistically,

but might not represent an appropriate description of the intended scientific meaning. Words like

“distance” and “displacement” used in mechanics should be carefully translated to reflect their

scalar and vector meaning. This again shows why it is best to have a teacher do the translations.

To complicate things further, even in the same country, educational systems vary between

high school and college level. For example, in Saudi Arabia, math equations and scientific

notation are expressed using the Arabic language at the high school level but in the English

language at the college level. To overcome this problem, a specific version for each Arabic-

speaking country was created and labeled using a locale that includes the language and country

code, and a more universal version for use in college is labeled with just the language code.

10

Moreover, different conventions for expressing abbreviations of units in Arabic exist, and for

that reason, abbreviations were mostly avoided in the general versions of the simulations, unless

they were explained, to make sure variables and units can be understood. One drawback to this

solution is that when abbreviations are avoided, strings might be too long to fit in the allowed

space in the simulations. Again, a possible solution is to create different versions for each locale

that uses the specific abbreviations and units used in teaching science in classes.

Since the Arabic language is written from right-to-left, the direction of equations and

scientific notation also have to be written right-to-left. Handling this was a challenge when using

the Translation Utility as it involves shifting between English and Arabic to embed Arabic text in

html codes and between brackets. The mixing of two languages with mixed directions in the

same string makes it difficult to follow. In response to these difficulties, the Translation Utility

includes the ability to individually preview strings with these HTML and MessageFormat syntax

for debugging purposes. This individual string preview, along with the ability of running a

translated version of the simulation from the Translation Utility, saves time and avoids possible

layout problems (Fig. 2B). For equations, the reverse direction complicates writing equations

from right-to-left if one equation consists of multiple strings as that might reverse order. A single

string is preferable because it allows the translator to accommodate the right-to-left direction;

however, sometimes a single string can become long and cause layout problems. These pros and

cons must be considered with each individual case.

Chemical symbols (i.e. Na for Sodium) were kept in Roman letters as it is the standard in the

Arab world. Greek symbols used in science and math, the most obvious being “”, are used in

some cases and other abbreviations for symbols that are commonly used in Arabic textbooks

were used in others.

For number formats, Arabic-speaking countries use two different systems: Arabic numerals

(0, 1, 2, 3, …) used in the West, and so-called Hindi numerals or Eastern Arabic numerals (١ , ٠,

٣ ,٢, …). Some Arab countries use only Arabic numerals while others typically use the two

systems interchangeably. We decided to use Arabic numerals rather than translating to Hindi

since nearly all students understand the Arabic numerals and additionally with Hindi, it’s easy to

confuse the zero (٠) and a decimal point (.). While text in Arabic runs from right-to-left,

conversely numerals run from left-to-right.

Ongoing Challenges

Many of the challenges faced by the co-authors from Saudi Arabia are common to other

languages as well. Languages that are written right-to-left clearly pose complications when

translating from a language such as English that is written left-to-right. Different character sets

bring with them all sorts of font problems. PhET initially incorrectly assumed that conventions

for expressing equations, variables, and mathematical symbols were universal and later had to

make these translatable. It was a pleasant surprise to find that chemical symbols (eg. Na for

sodium) are universal. So far, all translators and educators, we have spoken with, have used the

IUPAC (International Union of Pure and Applied Chemistry) system for name and symbol of

chemical elements (IUPAC 2008).

As mentioned previously, there are some aspects of i18n that are not addressed by PhET

simulations. Number formats, for example, are not handled properly. Some of these issues would

be addressed by using Java’s standard method of setting the locale for the Java Virtual Machine

(JVM). If the JVM knows the locale, then things like number formats will be automatically

handled by Java. Passing this information to the JVM requires the JNLP files request permission

11

to set Java System properties, and this

in turn requires online users to accept

a digital certificate. Several years ago

we found that acceptance of digital

certificates could pose a barrier to

simulation use especially in schools

where user privileges are extremely

limited. As such, PhET has prioritized

ease of online use and avoided

solutions that require certificates. As

certificates become more common,

we may reevaluate this decision.

 Translation of common strings

has been another ongoing challenge.

Strings that are common to many

simulations are stored in special

common-string files. These strings

can be translated using the Translation

Utility, but they cannot be tested

because they have no associated

simulation. This presents challenges

for translators, since they have no

context in which to evaluate

translations of common strings. It also

presents challenges for integrating and testing translations, since submitted translations for

common strings must be integrated with all simulations. PhET is still refining the process of

translating and integrating common strings.

 Features that were originally intended for one simulation often are found to be generally

useful, and are then migrated to PhET’s common framework. If these features have associated

strings, then the translations of those strings also need to be migrated from sim-specific string

files to the common-string files. That migration is currently an expensive manual process. PhET

is investigating how to automate this process

While the Translation Utility provides the ability to test translations, it does not detect user-

interface layout problems. Layout problems can occur when a translated string is significantly

longer or shorter than the original English string (Fig. 4). Longer strings in particular can cause

part of the simulation’s user-interface to overlap or become unusable. A translator who is not

thoroughly familiar with a simulation may not notice these issues.

Fig. 4 shows the “Simplified MRI”

Simulation translated into Dutch (upper).

The translated strings on the lower center

controls are too long and in the right

hand control panel causing the control

panel to cover the detector. The English

version is shown in the lower screen shot

demonstrating the intended layout.

12

Conclusion

The PhET Project has created the Translation Utility for translating PhET Interactive Simulations

from English to any other language and a system for delivering these translated simulations. The

process now works quite well, although PhET discovered problems with many of their initial

ideas. PhET learned many things about local conventions across the globe for expressing

chemical symbols, scientific-notation, mathematical symbols, abbreviations and numerals, and

the importance of teacher translators. Currently scientists/teachers have contributed a total of

1,758 translations in 51 different languages that are hosted on the PhET website. We hope that

sharing this experience will benefit others interested in translating science education materials.

Acknowledgements This work would not have been possible without the expert simulations created by The PhET

Team, particularly its superb software developers Sam Reid, Chris Malley, John Blanco, Mike Dubson, and

Jonathan Olson. PhET is supported by the National Science Foundation, the William and Flora Hewlett Foundation,

The Excellence Research Center of Science and Mathematics Education (ERCSME) at King Saud University, JILA

and the University of Colorado. ERCSME is grateful for the Ministry of Higher Education and King Saud

University, Riyadh, Saudi Arabia for their support.

References

Apache Software Foundation (2010). Apache Wicket http://wicket.apache.org

Deitsch, A. and Czarnecki, D. (2001). Java Internationalization. M. Loukides Ed. Sebastopol, CA: O’Reilly &

Associates, Inc.

IUPAC (2008) http://old.iupac.org/index.html

International Organization for Standardization (2010). ISO 3166-1 Country Code decoding table

http://www.iso.org/iso/iso-3166-1_decoding_table.html

International Organization for Standardization (2007). ISO 639-1:2002

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22109

Oracle (2010). Java
TM

 2 Platform Standard Ed. 5.0 Class MessageFormat

http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html

PhET Interactive Simulations (2009). Research page: http://PhET.colorado.edu/research/index.php

PhET Team (2007). The PhET Translation Utility. http://phet.colorado.edu/contribute/translation-utility.php).

The Unicode Consortium. (2009). The Unicode Standard, Version 5.2.0, defined by: The Unicode Standard, Version

5.2. Mountain View, CA: The Unicode Consortium. (http://www.unicode.org/versions/Unicode5.2.0/)

http://wicket.apache.org/
http://old.iupac.org/index.html
http://www.iso.org/iso/iso-3166-1_decoding_table.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22109
http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html
http://phet.colorado.edu/research/index.php
http://phet.colorado.edu/contribute/translation-utility.php
http://www.unicode.org/versions/Unicode5.2.0/

